Connect with us

Bunker Fuel Quality

VPS强调定期检查燃油系统在预防船舶发动机损坏方面的重要性

Steve Bee 探讨了进行定期检查在船舶发动机维护方面的重要作用,并强调,即使是符合 ISO 8217 标准的船用燃料,如果在交付后管理不善,也可能会导致严重的发动机损坏。

Published

on

船用燃料测试公司 VPS 的集团营销和战略项目总监 Steve Bee 于周一(4 月 14 日)探讨了燃油系统监控检查(Fuel System Check Monitoring)在保护船舶发动机方面的关键作用,因为,发动机损坏对船舶运营商而言可能是一个代价高昂的风险:

统计数据表明,一艘船在其使用寿命期间将遭遇一到两次的主发动机损坏事件。同时,每起事故的平均损失估计约为 65 万美元,甚至,更严重的事故也可能造成每单损失索赔数额高达 120 万美元。因此,找出造成此类损坏的主要原因并了解如何进行预防是非常重要的事。

当然,预防胜于补救。当下,燃油质量与操作问题仍是导致发生重大主发动机故障的主要原因。在这方面,VPS 经常观察到,通过在船上实施强大且结构合理的燃油管理计划,将可以帮助船东避免此类问题。

而一个常见的误解,就是认为燃料符合国际船燃质量标准 ISO 8217 就意味着它“适用”的想法。其实,事实并非如此,即使是在交付给船舶时属于“符合规格”的燃料,一旦在交付后管理不善,也可能会导致发动机出现严重损坏。其中,ISO 8217 规定了用于船用柴油发动机和锅炉的石油燃料在使用前必须进行适当处理的要求,这意味着,燃料在被交付与燃烧之间都应在船上进行适当处理。

其中,精炼石油时使用的催化剂由硅酸铝制成,而硅酸铝,也会随着时间的推移而分解。接着,由此产生的铝、硅所组成的粗糙致密碎片,也最终会残留在精炼液的残留物之中。而这些被称为“残留催化颗粒”(Cat-Fines)的颗粒物,都具有很强的磨蚀性,并可能会严重损坏船舶发动机部件。

当下,主要船用发动机制造商建议,发动机进气口处的燃料铝加硅(Al+Si)含量应低于 10-15 毫克/千克。因此,即使所供应的燃料符合 ISO 8217:2024 标准中对铝加硅(Al+Si) 含量的严格限制(根据燃料等级介于 40-60 毫克/千克),燃料处理系统仍必须以 75%-83% 的高效率运行,才能将这些高磨损性颗粒去除至引擎制造商要求的水平。

此外,国际内燃机学会 (CIMAC) 针对燃油质量的建议指出:“燃油分析是监测燃油质量的唯一方法,无论是在保管交接时和在交接地点,还是在船上燃油清洁前、后,以及,燃料接触发动机入口处时。因此,定期监测燃料处理系统将提供相关信息,并将有助于决定设备的维护周期,以及应对因故障或操作不当而导致的潜在发动机问题。”

然而,最重要的、但经常却被忽视的流程之一,就是定期进行燃油系统检查 (Fuel System Check,简称FSC),以评估燃油中铝和硅催化颗粒的含量。其中,燃油中存在的“残留催化颗粒”可能极具破坏性,并可导致发动机部件快速磨损。因此,在残留催化颗粒进入船舶发动机之前监测其含量,将可以帮助防止此类损害。同时,季度性地在净化过程前后采集样品进行分析,将是监测催化颗粒含量的最有效方法。此外,燃油系统检查 (FSC) 也能帮助与发动机制造商的一般建议保持一致,即确保进入发动机的燃油所含的催化颗粒不得超过 10-15 毫克/千克,并同时也评估净化器的效率。

因此,定期检查燃油系统至关重要,原因如下:

  • 有助于在发生重大损害之前识别潜在风险和操作问题。
  • 确认系统的流量、温度和排放周期已根据所处理的特定燃油进行适当调整。
  • 确认燃油处理系统已得到妥善维护。
  • 降低运营成本并延长关键部件的使用寿命。
  • 识别交付后可能进入燃油的异常成分。

此外,定期对燃油处理系统进行取样,也能发现诸如压载系统进水、加热线圈泄漏以及货物污染等其他问题。无论是谁,都不会想要看到船舶净化器被当成泵那样运行!

而以下,是一个典型的例子、案例研究:

一艘液化石油气(LPG)油轮在富查伊拉加注高硫燃油(HSFO),且该燃油符合ISO 8217规范。然而,在使用被加注的燃油后,轮机长却报告主机膨胀水箱出现低液位警报,以及发现主机2号和4号气缸的排气温度过高。接着,该船的主机开始逐渐减速,直到轮机长报告主机气缸疑似存在泄漏时,该船已无法启动。就这样,该船漂流了大约10个小时,并最终在印度海岸抛锚。

在拆卸其发动机后,发现了以下情况:

然后,VPS技术顾问建议该船提交燃油系统样本;接着,在经检测后,针对系统的测试结果表明了相关净化器的运作实际上和泵无异。

而对进入发动机的样品进行检测后,也证实了铝加硅(Al+Si) 含量是船舶出现问题的原因,因为,其 Al+Si 颗粒的物理尺寸为:5-45 µm。

一般而言,船舶净化系统能够有效去除的催化颗粒理想粒径范围介于 5 至 15 微米(µm)之间。其中,净化器的设计目标在于去除这些较小的颗粒,因为,这些是重质燃油中最常见的颗粒尺寸,并会对发动机部件造成严重的磨损和损坏。

如果催化颗粒粒径大于 15 微米,则会对船舶发动机造成重大风险。并且,较大颗粒的磨损性更强,可能会对气缸套、活塞环和燃油喷射器等关键发动机部件造成严重的磨损、损坏。

注:VPS 的完整文章可在此处找到。

图片来源:VPS
发布日期:2025 年 4 月 15 日

Continue Reading

Bunker Fuel Quality

Gard 提出建议降低船燃催化剂颗粒含量不合格罚款风险

根据其会员和客户的报告,2025 年 8 月主要加油港口的 VLSFO 和 HSFO 被发现催化剂颗粒含量已显著增加,因此,该保赔协会概述了其相关建议。

Published

on

By

根据Gard会员和客户的报告,2025年8月主要加油港口的极低硫燃料油(VLSFO)和高硫燃料油(HSFO)均被发现催化剂颗粒(catfines)含量显著增加。因此,海事保赔协会Gard在9月9日发表的这篇文章中提出了一些重要建议,以降低船用燃料面对催化剂颗粒不合格含量罚款的风险:

我们参考了Veritas Petroleum Services (VPS)于2025年9月4日发布的《全球船用燃料催化剂颗粒含量偏高问题蔓延》通函(A Global Pandemic of High Catfines in Marine Fuel);在2025年8月11日至8月31日期间,VPS在下图所示区域观察到了大量燃料中催化剂颗粒含量已上升,介于62ppm到176ppm。而这一趋势,也与Gard自身观察的情况如出一辙。

了解催化剂颗粒

催化剂颗粒( catalytic fines,简称Catfines)是微小的磨蚀性颗粒,能对船舶发动机构成重大威胁;同时,这类颗粒主要由铝 (Al) 和硅 (Si) 组成。与粘度和水一样,催化剂颗粒被认为是发动机进气口燃油质量检测指标其中的三大关键特性。就尺寸而言,催化剂颗粒直径范围介于 1 至 75 微米。而1微米(micrometer),仅相当于 0.001 毫米。作为比较,人的头发厚度约为 50 至 70 微米,而一粒细沙则约为 90 微米。其中,颗粒更大,则磨蚀性更强,会对气缸套、活塞环和燃油喷射器等关键发动机部件造成严重磨损和损坏。

由于催化剂颗粒极其坚硬且具有磨蚀性,它们会划伤或嵌入船舶发动机部件的钢表面,尤其是那些会相互摩擦的部件。而当它们进入发动机时,也会导致高磨损率和擦损,从而造成关键部件损坏、代价高昂。此外,船舶在波涛汹涌的海面上运行等因素,也可能会搅动油箱中此前已沉积的此类物质,而加重其严重性。

VLSFO 中的催化剂颗粒

催化剂颗粒问题在 VLSFO 中因多种因素而更加复杂。其中,这种燃料通常粘度较低,会降低离心分离器的效率,并且,其因成分多样而构成了其行为难以预测。如果此类燃料加热不足,蜡会析出并堵塞净化器和过滤器,而进一步削弱这些设备去除此类磨蚀性颗粒的能力。此外,催化剂颗粒从旧油箱沉积物中重新溶解的风险也加剧了问题的复杂性。因此,鉴于这些挑战,严格的燃料管理极其重要。

行业标准

ISO 8217 标准规定了燃油中催化剂颗粒含量的最高上限。其中,2010、2012、2017 和 2024 版标准规定,对于交付给船舶的粘性燃油,催化剂颗粒含量的最高限值不得超过 60 毫克/千克(或 60 ppm)。同时,这一限值已较 2005 标准中的 80 毫克/千克大幅降低。需特别注意的是,ISO 8217 限值适用于交付给船舶时的燃油,而非进入发动机时的燃油。

为了确保安全运行,大多数发动机制造商建议,进入发动机入口时的催化颗粒含量应远低于以上标准,且理想情况下应低于 15 ppm。为了满足这些要求,船舶必须依赖有效的船上燃油处理系统。其中,CIMAC的《柴油发动机燃油清洁系统设计和操作指南》(09, 2024 v2)附录 I ,已概述了原始设备制造商 (OEM) 针对进入发动机前的燃油质量和燃油净化系统的一些主要要求。

主要建议

有效管理燃油残留物对于预防发动机损坏至关重要。虽然,大多数船东和管理者都已制定了相关程序,但,我们仍需重申一些最重要的做法,以降低风险。

加油和取样

  • 谨慎采购燃油——加油时优先选择信誉良好的供应商,避免选择知名度较低的本地供应商。
  • 明确规格——确保租船合同包含详细的燃油规格、最新的 ISO 8217 标准、推荐的供应商以及精确的处理和取样要求。
  • 遵循标准程序——遵守行业标准的取样规范,包括从船舶歧管处取样、使用合适的立方容器,并确保所有文件(例如燃油交付单)均已正确填写。
  • 使用前分析——使用新燃油前,进行彻底的样品分析。

船上储存和沉淀

  • 加强燃油隔离——保持良好燃油隔离,避免污染。
  • 兼容性测试——如果无法避免发生混合,请进行兼容性测试并遵循规定的混合比例。
  • 预留沉淀时间——确保燃油在油箱中有足够的沉淀时间。
  • 排空舱底水——沉淀舱和日用油舱应每天至少排空两次。
  • 清洁油舱——尽可能清洁沉淀舱和日用油舱,以去除沉积物。

净化措施

  • 根据燃油密度选择合适的净化器碟片。
  • 按照燃油分析报告的建议在正确的温度下运行。
  • 考虑以适当的进料速率使用两台净化器(并联或串联),以提高净化效率。
  • 妥善保养和维护净化装置。

监测与预防

  • 仔细监测燃油过滤器是否有堵塞迹象。
  • 注意油泥的形成和过滤器堵塞情况,尤其是在经历恶劣天气之后。
  • 定期对净化器前、后的燃油进行取样分析,以确认设备运行效率。
  • 定期进行气缸刮油分析,检查是否存在磨损。
  • 此外,VPS建议采集燃油系统样本进行检查,以评估发动机进气口或靠近进气口的燃油处理效率。这些数据对于后续评估发动机磨损是否加剧至关重要。

在此,我们感谢 Veritas Petroleum Services 提供上述信息。

图片来源:Unsplash 的Shaah Shahidh和 VPS
发布日期:2025 年 9 月 23 日

Continue Reading

Bunker Fuel Quality

新加坡:VPS研讨会探讨2024/2025年全球船用燃料消耗及不合格趋势

Captain Rahul Choudhuri向参与者概述了2025年2月涉及纽约一位知名船东的VLSFO污染案例。

Published

on

By

周四(9 月 18 日),VPS在新加坡举行的研讨会提出并探讨了一系列行业热门话题,包括:当前船用燃料格局、污染案例研究,以及采用优于 ISO 8217 规范的高级筛查的重要性。

在题为“燃料质量、新燃料挑战和脱碳”(Fuel Quality, New Fuels Challenges & Decarbonisation)的VPS研讨会上,VPS战略伙伴关系总裁Captain Rahul Choudhuri 强调了行业对VLSFO 的持续依赖以及催化剂颗粒(catfines)和污染物等不合格风险的上升。

Captain Rahul Choudhuri 指出,尽管比例已下降,VLSFO 仍是国际商用船队主要消耗的燃料(45%);而填补下降缺口的,则包括已更多被采用的HSFO、ULSFO、MGO, 以及(尤其是)生物燃料。

他表示:“我认为,现有燃料在未来的好一段时间内将继续存在,并因此有必要持续地提升对它们的了解。”

不合格趋势——2025年VLSFO被发现 “极高”的不合格催化剂颗粒含量

在研讨会上,Captain Choudhuri分享了VPS的数据,在展示不同规格燃料的不合格特性之际,也指出了典型不合格参数因船用燃料类型而异(MGO/VLSFO:倾点;HSFO:密度;VLSFO:硫、粘度、水分、倾点、铝、硅、催化剂颗粒等)。

尽管,多年来VLSFO的不合格率一直保持在5%左右,但是,他指出,2025年VLSFO的催化剂颗粒不合格率“遥遥领先”,不合格含量“极高”。

“就在两周前,我们发布了一份通函,探讨了六个国际港口的VLSFO被发现催化剂颗粒含量偏高的情况。”他解释。

“其中,被检测出的铝和硅含量高达62至176 ppm,而可能将导致活塞环、气缸套和燃油泵面临极高的磨损风险。因此,在所有这些案例中,仔细评估燃油的处理效率将持续作为一个非常明智的管理决策。”

船用燃料污染案例研究

Captain Choudhuri进一步分享了2025年2月一起船用燃料污染案例:当时,一位知名船东的船舶在纽约接收了超过400吨的VLSFO。

尽管,测试结果显示该燃油样品符合ISO 8217标准,不过,该样品却未能合格通过进一步的气相色谱-质谱(GC-MS)顶空筛查,并被发现含有大量酚类污染物。

“但是,该船别无选择,只能继续使用该燃油,并最终造成了过滤器和净化器中形成了大量的油泥。之后,该船的发动机失效,而在美国墨西哥湾漂流了三天,并且,其所在位置附近更存在石油钻井平台(增加了风险)。”他说道。

进行优于 ISO 8217 规范的先进筛查的重要性

展望未来,Captain Choudhuri认为,对船舶燃油舱进行适当的污染物筛查和早期检测极其重要,因为,这将发挥重要作用助力确保船舶和船员的安全。

“当我们谈论船用燃油质量时,我们总是会提到 ISO 8217。因此,我们行业面临的其中挑战,就是我们今天仍在使用较旧版本的标准,而这一点也意味着,总有一天船舶将收到质量很差的船用燃料。”他强调。

“为什么我们仍使用一个已被撤销、并已有 20 年历史的燃料标准,为什么,航运业会这么抗拒改变呢?当下,这是一个困境,也是一个诅咒;我认为,如果不通过强制性要求推动改变,这种情况将不会改变。”

图片来源:VPS
发布日期:2025 年 9 月 22 日

Continue Reading

Bunker Fuel Quality

Integr8 报道:美国制裁引发新加坡及 ARA 地区HSFO质量问题激增

美国2025 年 1 月的制裁导致了新加坡的HSFO质量预警数量翻了一番,同时,ARA 地区的不合格燃油占所有检测结果的 4%,高于去年年底的 2.3%。

Published

on

By

船燃贸易和燃料管理服务公司 Integr8 Fuels 于周三(9 月 10 日)发布了其最新的半年期《船用燃料质量趋势报告》(Bunker Quality Trends Report),其中重点介绍了地缘政治变化、新法规和生物燃料的兴起将如何重塑 2025 年的船用燃料市场。

该报告强调,2025 年 1 月的美国制裁方案重塑了全球燃料流动,而促使中东石油取代了减产的俄罗斯货物。同时,这已导致新加坡与HSFO相关的质量预警次数翻了一番,而在安特卫普-阿姆斯特丹-鹿特丹 (ARA) 地区,则不合格结果占所有测试的 4%,高于去年年底的 2.3%。

同时,灰分含量升高均为这两个地区的“罪魁祸首”,并反映了在 HSFO 混合物中较重、富含金属的货品越来越普遍。

而报告的其他亮点也包括:

地中海排放控制区 (ECA) 重塑燃料结构——质量问题正在缓解

随着地中海排放控制区 (ECA) 于 5 月 1 日正式启动,目前的硫含量 0.1%限制已造成船用燃料结构随之发生显著变化。自 Integr8 上次发布分析报告以来,我们获得了又一个月的数据,并可以看到市场仍在变化,但走势基本稳定:

  • VLSFO 的占比几乎减半,从 2024 年 12 月的 60% 降至 2025 年 6 月的 35.6%。
  • LSMGO的需求增长了一倍多,从 13% 增至 30%。
  • 受安装脱硫塔的船舶需求推动,HSFO 占比小幅攀升至 30.1%。
  • ULSFO 占比飙升,从 0.3% 增至 4.1%。

其中,ULSFO在6 月份激增的不合格质量通知数量到 7 月份已急剧下降,而表明了启动排放控制区 (ECA) 后的初期问题正在缓解。

生物燃料:平衡质量风险与监管回报

生物燃料仍属于小众市场,但是,在欧盟和排放控制区 (ECA) 法规下,其吸引力日益增强。其中,该报告指出了相关的风险和机遇:

  • 约 13% 的 B100 和 LSMGO-30 样品倾点偏高,而增加了在寒冷气候下处理生物燃料的挑战。
  • 当船东采取以下策略时,成本优势将显现,包括:
  1. 在鹿特丹购买 B100,将因为伴随的可交易 HBE 回扣票券而在比利时港口获得价格优势。
  2. 在排放控制区 (ECA) 以 B100 替代 LSMGO 或ULSFO,可缩小与传统燃料的成本差距。
  • 专注于欧盟内部航程,最大限度地利用欧盟排放交易体系 (EU ETS) 和 FuelEU 法规下的监管优势。
  • 利用 FuelEU 联营池机制,进行合规盈余和亏损交易,以释放更多价值机会。

“制裁、新的排放控制区和替代燃料都在重塑燃料市场格局。”Integr8 Fuels 船用燃料质量与索赔经理 Chris Turner 表示。

“我们最新的白皮书展示了这些变化不仅影响船燃供应和合规性,也在质量和成本方面带来新的风险和机遇。因此,船东需要密切关注这些变化,以避免风险敞口并充分利用现有优势。”

此外,报告还指出,之前的报告曾强调 ARA(安特卫普-阿姆斯特丹-鹿特丹) 综合体存在 VLSFO“主要的硫违规风险”,而在最新的半年数据,也已证实了这一评估。

在ARA枢纽 12 个提供数据的港口中,9.5% 的 VLSFO 样品硫含量检测结果介于 0.51% 至 0.53% Wt. ,属于灰色区域,而在 95% 的统计公差范围内,则1.7% 的检测结果超出该范围。

相比之下,新加坡保持了卓越的记录:只有1.4% 边缘值样品,超标率仅 0.2%。

实际上,仅根据船东的分析,如今在 ARA 枢纽的船燃装船超标概率大约是新加坡船燃装船超标概率的八倍。

有趣的是,根据报告,ARA 内部的风险分布依然不均衡。

“鹿特丹和安特卫普等核心加油站的超标率介于 1-2% 之间,尚可控制,但是,仍记录了近十分之一的样本质量落于容差范围内。同时,外围加油站的表现明显较差,在某些情况下,直接不合格率甚至达到两位数。”报告称。

注:Integr8 的船用燃料质量趋势报告(2025 年 9 月发布)可在此处下载。

图片来源:Integr8 Fuels
发布日期:2025 年 9 月 11 日

Continue Reading
Advertisement

我们的合作伙伴



趋势分析