Bunker Fuel Quality
VPS强调定期检查燃油系统在预防船舶发动机损坏方面的重要性
Steve Bee 探讨了进行定期检查在船舶发动机维护方面的重要作用,并强调,即使是符合 ISO 8217 标准的船用燃料,如果在交付后管理不善,也可能会导致严重的发动机损坏。

船用燃料测试公司 VPS 的集团营销和战略项目总监 Steve Bee 于周一(4 月 14 日)探讨了燃油系统监控检查(Fuel System Check Monitoring)在保护船舶发动机方面的关键作用,因为,发动机损坏对船舶运营商而言可能是一个代价高昂的风险:
统计数据表明,一艘船在其使用寿命期间将遭遇一到两次的主发动机损坏事件。同时,每起事故的平均损失估计约为 65 万美元,甚至,更严重的事故也可能造成每单损失索赔数额高达 120 万美元。因此,找出造成此类损坏的主要原因并了解如何进行预防是非常重要的事。
当然,预防胜于补救。当下,燃油质量与操作问题仍是导致发生重大主发动机故障的主要原因。在这方面,VPS 经常观察到,通过在船上实施强大且结构合理的燃油管理计划,将可以帮助船东避免此类问题。
而一个常见的误解,就是认为燃料符合国际船燃质量标准 ISO 8217 就意味着它“适用”的想法。其实,事实并非如此,即使是在交付给船舶时属于“符合规格”的燃料,一旦在交付后管理不善,也可能会导致发动机出现严重损坏。其中,ISO 8217 规定了用于船用柴油发动机和锅炉的石油燃料在使用前必须进行适当处理的要求,这意味着,燃料在被交付与燃烧之间都应在船上进行适当处理。
其中,精炼石油时使用的催化剂由硅酸铝制成,而硅酸铝,也会随着时间的推移而分解。接着,由此产生的铝、硅所组成的粗糙致密碎片,也最终会残留在精炼液的残留物之中。而这些被称为“残留催化颗粒”(Cat-Fines)的颗粒物,都具有很强的磨蚀性,并可能会严重损坏船舶发动机部件。
当下,主要船用发动机制造商建议,发动机进气口处的燃料铝加硅(Al+Si)含量应低于 10-15 毫克/千克。因此,即使所供应的燃料符合 ISO 8217:2024 标准中对铝加硅(Al+Si) 含量的严格限制(根据燃料等级介于 40-60 毫克/千克),燃料处理系统仍必须以 75%-83% 的高效率运行,才能将这些高磨损性颗粒去除至引擎制造商要求的水平。
此外,国际内燃机学会 (CIMAC) 针对燃油质量的建议指出:“燃油分析是监测燃油质量的唯一方法,无论是在保管交接时和在交接地点,还是在船上燃油清洁前、后,以及,燃料接触发动机入口处时。因此,定期监测燃料处理系统将提供相关信息,并将有助于决定设备的维护周期,以及应对因故障或操作不当而导致的潜在发动机问题。”
然而,最重要的、但经常却被忽视的流程之一,就是定期进行燃油系统检查 (Fuel System Check,简称FSC),以评估燃油中铝和硅催化颗粒的含量。其中,燃油中存在的“残留催化颗粒”可能极具破坏性,并可导致发动机部件快速磨损。因此,在残留催化颗粒进入船舶发动机之前监测其含量,将可以帮助防止此类损害。同时,季度性地在净化过程前后采集样品进行分析,将是监测催化颗粒含量的最有效方法。此外,燃油系统检查 (FSC) 也能帮助与发动机制造商的一般建议保持一致,即确保进入发动机的燃油所含的催化颗粒不得超过 10-15 毫克/千克,并同时也评估净化器的效率。
因此,定期检查燃油系统至关重要,原因如下:
- 有助于在发生重大损害之前识别潜在风险和操作问题。
- 确认系统的流量、温度和排放周期已根据所处理的特定燃油进行适当调整。
- 确认燃油处理系统已得到妥善维护。
- 降低运营成本并延长关键部件的使用寿命。
- 识别交付后可能进入燃油的异常成分。
此外,定期对燃油处理系统进行取样,也能发现诸如压载系统进水、加热线圈泄漏以及货物污染等其他问题。无论是谁,都不会想要看到船舶净化器被当成泵那样运行!
而以下,是一个典型的例子、案例研究:
一艘液化石油气(LPG)油轮在富查伊拉加注高硫燃油(HSFO),且该燃油符合ISO 8217规范。然而,在使用被加注的燃油后,轮机长却报告主机膨胀水箱出现低液位警报,以及发现主机2号和4号气缸的排气温度过高。接着,该船的主机开始逐渐减速,直到轮机长报告主机气缸疑似存在泄漏时,该船已无法启动。就这样,该船漂流了大约10个小时,并最终在印度海岸抛锚。
在拆卸其发动机后,发现了以下情况:

然后,VPS技术顾问建议该船提交燃油系统样本;接着,在经检测后,针对系统的测试结果表明了相关净化器的运作实际上和泵无异。

而对进入发动机的样品进行检测后,也证实了铝加硅(Al+Si) 含量是船舶出现问题的原因,因为,其 Al+Si 颗粒的物理尺寸为:5-45 µm。

一般而言,船舶净化系统能够有效去除的催化颗粒理想粒径范围介于 5 至 15 微米(µm)之间。其中,净化器的设计目标在于去除这些较小的颗粒,因为,这些是重质燃油中最常见的颗粒尺寸,并会对发动机部件造成严重的磨损和损坏。
如果催化颗粒粒径大于 15 微米,则会对船舶发动机造成重大风险。并且,较大颗粒的磨损性更强,可能会对气缸套、活塞环和燃油喷射器等关键发动机部件造成严重的磨损、损坏。
注:VPS 的完整文章可在此处找到。
图片来源:VPS
发布日期:2025 年 4 月 15 日
Contamination
VPS就生物燃料中 FAME 对发动机油的污染影响提供建议
Stanley George 强调,发动机使用基于 FAME 的生物船用燃料会更容易受油粘度快速下降影响,因为 ,FAME 不易蒸发,并会导致产生累积效应。

周一(6 月 23 日),船用燃料测试公司 VPS 的集团科学与技术经理 Stanley George 强调了发动机使用基于脂肪酸甲酯 (FAME) 的生物燃料会更容易受油品粘度快速下降影响,因为, FAME 不易蒸发,并会导致产生累积效应:
发动机若使用含有脂肪酸甲酯 (FAME) 的生物混合燃料,尤其是纯 FAME(如 100% FAME)的话,其机油粘度将会随着时间的推移而下降。
当下,发动机润滑油中存在燃油污染是一种已知的现象,其中,大多数船用级发动机油的配方都能耐受一定程度的此类污染,并保持运行性能。
同时,基于其设计和运行特点,四冲程筒状活塞发动机受 FAME 污染的影响会更为明显。因为,这些发动机使用共用的油底壳进行曲轴箱和气缸润滑,而使得它们更容易因喷油器泄漏或窜气而导致燃油漏入润滑油。相对于具有独立的润滑系统以限制燃油相互作用的二冲程十字头发动机,四冲程发动机会不断循环使用同一种油,而导致 FAME(沸点高、挥发性低)随时间的推移积聚。其中,这会导致油品粘度更显著地降低,以及润滑性能更快下降。
此外,典型的SAE(国际自动机工程师学会)30 号发动机油(一种润滑油)在 40°C 时的粘度约为 90 至 110 cSt,而 B100(100% FAME)或其化石对应物,如: DMA(馏分燃料)在 40°C 时的粘度在 4 cSt 范围内。因此,任何该类燃料(馏分油或含有 FAME 的生物馏分油混合物)混入废机油都会显著降低废机油的粘度。
在这方面,大多数原始设备制造商 (OEM) 都规定了机油的最小和最大粘度限值,若超出此限值范围发动机将不得运行,以避免发生磨损或润滑失效。例如,一个常见的报废标准,就是在40°C时机油粘度相对新油粘度值降低25%。因此,就 SAE 30号机油(在40°C时的常态新鲜粘度约为 90 cSt)而言,这将相当于所允许的最小限值约为 67 cSt。
而在比较馏分油和 B100 的粘度时,两者并没有显著差异(在40°C 时两者的粘度通常介于 3 至 5 cSt 之间)。然而,当发动机使用传统馏分油时,一般都不会观察到机油粘度明显下降。这可能是因为化石燃料中存在更高的挥发性和更轻的馏分,并往往会随着时间的推移而蒸发。此外,在发动机运行期间定期补充新鲜机油,以补偿蒸发和泄漏造成的损失,将有助于保持更稳定的整体机油粘度。因此,相对于B100, 馏分油稀释效应能被最小化,而让润滑油能够更长时间地保持性能。
脂肪酸甲酯 (FAME) 的蒸馏行为分析
ISO 3405 是一项国际标准,概述了在常压下测定石油及相关产品蒸馏特性的实验室方法。该测试可帮助我们了解燃料在储存和使用过程中的成分和行为,并包括形成蒸汽的趋势。
通常,在该方法中,样品会在受控条件下蒸馏,并在整个蒸馏过程中将记录特定体积样品的蒸发温度。而其中的关键测量指标,则包括:初沸点 (Initial Boiling Point,简称IBP) - 收集到第一滴冷凝物时的温度;终沸点 (Final Boiling Point,简称FBP) - 最后一滴液体蒸发时的温度;还有,特定回收率时的温度,即体积回收率达到 10%、50% 和 90% 时的对应温度。之后,所收集到的数据将用于绘制蒸馏曲线,以展示样品的沸腾行为。
因此,为了理解这一现象,我们使用 ISO 3405 方法比较了 100% FAME (B100)、30% FAME (B30) 和纯直馏馏分燃料的蒸馏特性。而下图,则展示了不同蒸馏特性的差异。

图片来源:VPS
发布日期:2025年6月24日
Bunker Fuel Quality
VPS探讨馏分油:它是“无需担忧”的船用燃料吗?
Steve Bee 探讨了在近期启动新的地中海排放控制区后,船用柴油/馏分油的更高需求究竟是否会导致燃料质量下降。

船用燃料测试公司 VPS 的集团营销和战略项目总监 Steve Bee 于周四(5 月 29 日)探讨了地中海新排放控制区 (ECA) 在近期实施后,针对船用柴油/馏分油的更高需求究竟是否会导致燃料质量下降。目前,地中海地区对船用馏分油的需求已持续在增加,以满足相关的0.10% 含硫量限制规范。
此外,他也探讨了与此类船用燃料相关的燃料管理问题与挑战:
馏分油简介
随着地中海新排放控制区 (ECA) 于 2025 年 5 月 1 日启动,一个问题也随之而来:我们针对船用柴油/馏分油的需求会增加吗?如果会,需求的增加是否会导致产品质量下降?因此,本文旨在探讨当前船用馏分油的质量问题,以及可用于帮助确定燃料质量的测试参数和相关的燃料管理考量,以降低任何相关风险,具体包括:
- 密度
- 粘度
- 闪点
- 冷流性能
- 润滑性
- 脂肪酸甲酯 (FAME)
- 微生物活性
- 不相容性
几十年来,全球航运业一直将馏分油视为“无需担忧”的燃料。虽然说,高硫残渣油和极低硫油在燃料管理方面存在着一定的挑战,但其实,这并不意味着船用馏分油没有其难处,重点在于,采用它所面临的考量因素和难度有所不同。
当下,为了支持行业脱碳和合规性,ISO8217:2024 船用燃料标准已规定了四种等级的船用化石燃料馏分油,包括:DMA、DMB、DMX、DMZ,以及三种含脂肪酸甲酯 (FAME) 的馏分油,包括:DFA、DFB 和 DFZ。
目前,DMA 是最常用的船用馏分油,并适用于大多数船用发动机;相对于较重的残渣船用燃料,DMA 以更清洁的燃烧、稳定的性能和更低的排放而闻名。并且,这种燃料通常也被称为低硫船用轻柴油 (LSMGO)。
- DMA:这是以上所述的 LSMGO。根据分类,它属于一种适用于各种船用发动机的标准船用馏分油。
- DMB:馏分油中最重的燃料,通常用于中速船用发动机。
- DMX:通常被称为特殊轻质馏分油,主要用于应急发动机和设备,以及一些需要低粘度和低密度燃料的高速发动机。
- DMZ:这是一种清洁馏分油,适用于更敏感的发动机。
与此同时,超低硫燃料油 (ULSFO) 也是另一种类似的燃料类型。而当下,像DMA这样的船用燃料通常会添加特定的添加剂混合物,以应对和化解海洋环境中的典型挑战,例如:储罐中微生物的生长。此外,DMA 的十六烷值(燃料的发火性能)通常超过 45,而 ULSFO 的十六烷值则介于40 到 45 之间。在市面上,有些高级柴油的十六烷值会更高,但,采用ULSFO 的主要目标仍在于降低硫排放。
在成本方面,DMA 成本较高,而成了其又一个差异化因素,并且,其价格可能受到特定海运规则、港口需求以及全球船燃市场整体动态所影响。而对于超低硫燃油 (ULSFO),则其定价主要取决于原油价格、炼油厂产能、运输成本,以及公路运输行业的需求等因素。
在送交 VPS进行测试的所有燃油样品中,船用馏分油 (MGO) 和超低硫燃油 (ULSFO) 分别占了 14.2% 和 1.2%:


在2025年第一季度,馏分油交付量保持稳定,约为80万吨,而超低硫燃油的交付量则环比增长了15%。
图片来源:VPS
发布日期:2025年5月30日
Bunker Fuel Quality
Gard:腰果壳油混合物是问题燃料的标志吗?
在Gard 处理过的一些索赔案件中,曾涉及因传统燃料中含有源自腰果壳油的酚类化合物,而出现船舶运营问题或机械损坏。

嘉德保赔协会(Gard)最近发表的一篇文章探讨了关于腰果壳油 (CNSL) 的深入分析,以及该协会所处理的几起涉及传统燃料中检测出源自 CNSL 的酚类化合物的案件,其中,这些化合物也是船舶出现运营问题或机械损坏的原因。
此外,本文章也由VPS 的 Captain Rahul Choudhuri 协助撰写,内容如下:
为了满足环境法规,运输行业对低碳至零碳燃料的需求正不断增长,并因此促进了人们对替代燃料的兴趣。其中,脂肪酸甲酯 (FAME) 是生物燃料的热门选项,但,由于各运输行业的需求量很大,其需求已超过了供应量。与此同时,源自腰果产业的副产品——腰果壳油 (CNSL),目前已被视为一种生物燃料的替代原料。
什么是 CNSL?
与 FAME 生物燃料不同 ,腰果壳油是一种经济高效的可再生燃料。不过,作为一种取代苯酚物质,其高反应性和较低的稳定性也归因于其较高的碘值。而除了燃料潜力之外,腰果壳油 (CNSL)目前已用于生产塑料、树脂、粘合剂、层压板和表面涂层。此外,其高酸值 (> 3mgKOH/g) 也使其具有显著的腐蚀性。与此同时,腰果壳油中易聚合形成胶状物和燃料沉积物的主要酚类化合物包括:
- 腰果酸,为腰果壳油高酸性特性的主要原因。其中,热脱羧可将其转化为腰果酚,以从而降低酸性和增强稳定性。
- 腰果酚,也称为银杏酚,是一种稳定的酚类化合物,源自腰果酸,并具有改善的燃烧性和润滑性。
- 腰果酚,也称为橄榄酚,是一种具有类似表面活性剂作用的二羟基苯衍生物。
腰果壳油造成操作问题的案例
尽管腰果壳油具有增加润滑性和能量含量的优势,但其高酸性、燃烧性差和腐蚀性,也带来了相应的挑战。 2022年,在ARA地区报告了常规燃料普遍受腰果壳油(CNSL)污染的报道,并导致了燃油淤积、燃油喷射器故障、发动机部件腐蚀、滤清器堵塞、燃油系统出现沉积物、涡轮增压器喷嘴环腐蚀、燃油泵柱塞和泵筒磨损以及选择性催化反应器(SCR)装置损坏等运行问题。自这些事件发生以来,Gard已处理了多起涉及从燃料中检测到不同浓度腰果壳油(CNSL)酚类化合物的案件。
案例研究1
一艘船舶在东南亚加注了高硫燃油(HSFO),尽管,其已通过ISO 8217表2的初步测试和初步的气相色谱-质谱联用仪(GCMS)筛查,但,该燃油很快即引发了主机排气温度警报,并随后引发喷射器泄漏和致使燃油阀卡住。事后,该船需要被拖曳800海里才能安全抵达目的地。而后续的气相色谱-质谱联用仪(GCMS)检测,也显示了燃料的腰果壳油(Cardonol)含量超过10,000 ppm。并且,由此造成的损失超过了80万美元。
案例研究 2
在使用最初已通过 ISO 8217 表 2 测试的超低硫燃油 (ULSFO) 后不久,一艘船舶出现了严重的运营问题。其中,相关燃油是在北欧某港口被加注;而所引发的问题,包括主发动机排气温度过高、辅机发生故障和燃油泄漏,以及喷嘴结垢和高压燃油管损坏,最终,这些问题导致了所有燃油泵和阀门不得不被更换。同时,气相色谱-质谱联用 (GCMS) 分析显示,燃油中的腰果酚 (> 30,000 ppm)、腰果酚 (> 5,000 ppm) 和腰果酸 (> 1,000 ppm) 含量高,并总计占燃油成分质量的 1.24%。在经历这一事件后,船舶所需的维修费用超过了 40 万美元。
此外,我们也了解到,还有另几艘船舶也受同一批燃油影响。

值得注意的是,曾有案例表明,CNSL 混合传统燃料在储存和燃烧过程中并未出现任何运行问题。
以CNSL 作为生物燃料的测试(VPS 的经验)
VPS 在其近期发表的文章《腰果壳油——生物燃料的救星还是令人担忧的污染物?》(Cashew Nut Shell Liquid – Biofuel Saviour or Concerning Contaminant?)中分享了其对 CNSL 产品进行测试的结果,其中,这些产品与船用轻柴油 (MGO)、极低硫燃料油 (VLSFO) 和高硫燃料油 (HSFO) 进行了混合。经测试后,燃料燃烧分析 (FCA) 揭示了估算十六烷值、点火延迟和放热速率 (ROHR) 的一系列结果,其中, CNSL 混合物也呈现出性能影响梯度:HSFO混合物表现尤其不佳,VLSFO 混合物相对有所改善,而 MGO 混合物的效果则最为理想。
无论化石燃料/腰果壳油 (CNSL) 的混合比例是 80/20、70/30 ,还是 50/50,使用HSFO 的混合燃料的 FCA 结果始终最差。其中,这可能是由于HSFO 的沥青质含量与腰果壳油 (CNSL) 的酸性之间存在负相互作用。与 100% 的化石燃料、HSFO、VLSFO、MGO 和 100% 脂肪酸甲酯 (FAME) 相比,每种腰果壳油 (CNSL) 混合燃料的 FCA 结果均较差。
此外,他们也分享了一个 B100 案例研究,其中,该燃料被认定为 100% 脂肪酸甲酯 (FAME),但相关分析却显示了其成分为 40% 脂肪酸甲酯 (FAME)、10% 脂肪酸甲酯残渣和 50% 腰果壳油 (CNSL)。从技术上而言,该燃料仍属于 B100,但却含有不同的生物质成分。因此,这也强调了租船人和船东在燃料采购方面进行尽职调查的重要性。
CNSL 与 ISO 8217
Gard寻求咨询的一位专家报告称:“CNSL 并非船用燃料中的允许成分,因为,它并非石油精炼衍生的碳氢化合物,也不是来自其他被允许使用的碳氢化合物来源,而违反了 ISO 8217 第 5 条的规定。”在VPS 警报中, VPS也表达了类似的观点:“以 ISO 8217:2024 及所有先前版本为依据,CNSL不被视为标准燃料成分。因此,根据 ISO 8217 标准进行评估时,船用燃料中的 CNSL 可能被视为污染物,并可能被归类为不合格品。”
值得注意的是,ISO 8217:2024 的附件 B 指出,各种化学物质或物质(尽管并未详尽列出)都可能导致操作问题。因此,燃料油购买者可能需要进行高级测试,以识别燃料中可能导致不适用于发动机的物质。此外,尽管 ISO 8217:2024 涵盖生物燃料,其范围却未涵盖所有形式的生物质。
相关文章: VPS 探讨腰果壳油(CNSL):生物燃料的救星还是令人担忧的污染物?
图片来源:Unsplash 和 Gard 的 Shaah Shahidh
发布日期:2025 年 5 月 29 日
-
Legal6 天 ago
托克集团子公司的员工成了印尼国家石油公司腐败案的嫌疑人之一
-
Port&Regulatory1 周 ago
印度航运总局就拟议的国家生物燃料加注指南征求意见
-
Research2 周 ago
Integr8 Fuels分享了针对地中海排放控制区的全面分析报告
-
Biofuel1 周 ago
新加坡:Sea Oil Petroleum 获得 ISCC EU认证、将扩大产品组合
-
Newbuilding2 周 ago
新加坡:Pinnacle Marine首艘B100燃料多用途船启动1000小时试验
-
Milestone1 周 ago
Global Energy Storage Group将鹿特丹码头出售给Tepsa并退出荷兰市场