Connect with us

Bunker Fuel Quality

VPS:避免接收不良船用燃料的关键举措

Steve Bee、Malcolm Cooper 博士和 Stanley George 解释了如何保护船舶免受劣质燃油影响,并分享了可帮助避免接收劣质燃油供应的关键举措。

Published

on

VPS 集团商务总监 Steve Bee、VPS 首席执行官 Malcolm Cooper 博士和 VPS 集团科技经理 Stanley George 在一篇文章中,解释了如何保护船舶免受劣质船用燃料影响,并分享了为避免接收劣质燃油而应采取的关键举措:

不良燃油会严重影响船舶运营,并因此可能需要船员进行干预,甚至,在某些情况下也会导致运营故障 ,包括阻断运营、失去动力,以及失去推进力。因此,减轻不良燃油的影响,有助于防止船舶设备损坏并保护船上人员与环境的安全。同时,不良的燃料会导致燃料稳定性问题、化学污染和冷流性能差。因此,本文将介绍避免接收劣质燃油所应采取的关键举措。

不良燃料

劣质燃油是指质量不合格的燃油,可能会导致运营中断和带来燃油管理方面的挑战。其中常见的燃料质量问题,包括稳定性差、化学污染、腐蚀性倾向、燃烧不良和冷流特性差。因此,在投入使用之前对船用燃料进行彻底的测试非常有利,因为,它可以揭示燃料固有的潜在问题。 同时,这些数据通常有助于制定主动的措施,以降低此类燃料可引起的复杂操作风险。

近年来,船用燃料的总体质量一直保持稳定,但值得注意的是,不合格燃料的统计通常基于 ISO 8217 表 1 和表 2 中列出的标准。在很多情况下,符合这些标准的船用燃料都有可能因质量差劣而被证明不适合在船上使用,并且,也在许多情况下导致了灾难性故障(例如 2022 年 8 月和 2024 年 3 月的ARA 污染案例,2023 年 4 月的休斯顿污染案例,以及 2022 年 8 月的新加坡污染案例)。因此,这造成了需要额外的测试方法,例如 GCMS、WAT/WDT 和储备稳定性数(Reserve Stability Number),以准确评估燃料质量。

这些年来,因燃料受污染而导致的运营问题报告数量已显着增加,并且,这些问题通常无法通过常规的 ISO 8217 测试进行检测。其中,这一趋势至少部分归因于推行脱碳,尤其是 IMO 2020 等倡议的推动。为了转型,燃料供应商越来越多地在尝试使用各种原料作为与传统化石燃料进行混合的成分。

作为世界上其中最大的船用燃料质量测试公司,并覆盖了所有燃料测试的 50%份额,VPS 可以提供有关劣质和/或受污染燃料的宝贵见解和建议。其中,定期进行主动的预燃烧、燃料测试绝对是强烈推荐的方法,将有助于减轻船舶运营、船员安全和环境影响风险。而与发动机故障相关的典型不合格参数,通常为倾点、总沉积潜力、殘留催化顆粒和/或水含量。虽然国际船用燃料质量标准 ISO8217 已包含这些测试参数,但作为一种更勤奋、更明智的方案 ,使用者也应考量燃料的整体稳定性、冷流特性、化学污染性和潜在腐蚀性。

在 VPS,我们拥有所需的熟练程度和丰富经验,能进行专门被设计用于检测这些问题的专业测试。其中,我们量身定制的测试协议,能让我们识别潜在的、与燃料相关的挑战,并提供操作指导,有效地最大限度减少相关风险。

燃油稳定性

高硫燃料油 (HSFO) 和极低硫燃料油 (VLSFO) 都会因热老化和过热、高沉积物含量或化学污染等原因而出现不同程度的不稳定性。而不稳定性,通常通过沉积物的形成表现出来,同时,沉积物反过来也会堵塞船上过滤器、管道系统,可导致发动机面临燃料不足。

目前,ISO8217 标准包含潜在总沉淀物 (TSP) 测试,该测试可以很好地测出可能影响燃料稳定性的沉积物量。尽管如此,还是有必要进行其他的测试,例如总沉积物加速度 (TSA)、针对性的燃料老化测试、总沉积物存在量 (TSE)、燃料清洁度的测量,以及通过分离性测试确定燃料的稳定性储备,以衡量燃油将长链沥青烯保持悬浮状态的能力,而提供有关燃料稳定性测定的更多信息。

其中,可分离度值是常规热过滤方法的绝佳搭配。即使热过滤测试方法表明沉积物含量较低,可分离度值也可以识别出可能造成问题的不稳定燃料。相反地,这也可能表明高沉积物燃料实际上相当稳定且不太可能形成污泥。从操作角度来看,这些信息结合起来非常有用,因为它将提前表明缓解措施是否合适,以及应采取哪些合适的缓解措施。

化学污染

多年来,船用燃料的化学污染已导致了许多的船上操作问题,其中,许多化学品和化学组分都已被确定为原因。而主要的大范围污染事件,包括休斯顿事件(2018 年),有200 多艘船舶因潜在的酚类污染而受损;新加坡事件(2022 年),有80 艘船舶受到燃料中氯化碳氢化合物的影响;以及最近的 ARA枢纽事件(2023 年),大约 20 艘船舶由于燃料中含有苯乙烯和二烯混合物而出现问题。同时,在此期间,VPS 发现了许多较小的化学污染案例。值得庆幸的是,这之中许多都处于预烧阶段,并避免了任何操作问题或损坏情况。

随着时间的推移,VPS 在船用燃料中发现了所有以下化学物质,其重点影响如下:

通过使用 VPS 化学筛查服务对燃料进行燃烧前筛查,可以显着降低燃料的化学污染风险。这项低成本测试利用气相色谱-质谱 (GCMS) 分析方法,能针对燃料中超过 70% 可能存在的挥发性化学物质发出警告。不管是 VLSFO 还是 HSFO,我们都在 2023 年继续看到因化学污染而造成的船舶损坏案例。因此,应将 VPS GCMS-顶空化学筛查服务特别视为一种损坏预防服务;自 2018年以来,VPS收到的适用船用燃料样品中有 19.9%采用了这种快速的预燃烧保护服务,并平均有8%的测试样品得出“警告”结果,表明至少存在一种化学污染物,并已向船舶进行通报而避免了任何损坏。

2023 年 4 月,一艘新加坡化学品和成品油轮在休斯敦加注了 4.15 亿吨 VLSFO。该船于五月开始燃烧燃料,并很快地,其辅助发动机和主发动机开始出现许多问题,例如废气温度偏差以及燃油泵和柱塞筒磨损。此外,燃油喷射不足、压力增大以及燃油泵磨损、泄漏都导致了船舶启动失败等问题。

更令人担忧的是,在前往下一个美国港口的途中,该案例的主发动机因发生故障而完全停机;就算多次尝试启动发动机也均未成功。

随后, VPS 法医实验室测试利用了专有的气相色谱-质谱 (GCMS) 酸萃取方法,检测到船舶燃料中存在多种酚类和脂肪酸化合物。

之后,该船开始对辅助发动机和主发动机燃油泵进行必要的维修,总备件成本达 200,000 美元。 事后看来,船东表示,燃烧前筛查可能可大大帮助避免此类损害和成本损失。

冷流性能

密切监测燃料的冷流特性也很重要,特别是航行于温度较低的地区时。在寒冷气候下,应始终监测 HSFO、VLSFO 和 MGO 燃料的倾点。倾点是 2023 年最常见的 MGO 不合格参数,其中 ,有36.6% 的不合格 MGO 归因于倾点。然而,在达到 MGO 燃料的倾点之前,其浊点和冷滤点行为就已能提供潜在冷流问题的早期警告信号,而这些问题,常与燃料中出现蜡沉淀有关。 因此,测量馏分MGO中的这两个冷流参数,是关键的燃料管理实践。

VLSFO 燃料的石蜡含量高于 HSFO,因此,它更有可能出现蜡沉淀,可导致过滤器和管道堵塞,并最终造成发动机燃料不足。由于 VLSFO 是深色燃料,它无法像馏分燃料那样看到浊点。 因此,2019年VPS开发了一种专有的测试方法,可测量VLSFO的蜡出现(WAT)和蜡消失温度(WDT)。

一般建议燃油温度保持在 PP(倾点) 以上 10oC 左右,以避免凝固风险。 然而,2022-23年全球大多数加油港口的平均WAT和WDT往往分别高于30℃和40℃。 因此,这也可能意味着应加热燃料以避免在转运过程中凝固,并不一定意味着需升高储存温度。因为,船上的燃油输送泵通常是正排量泵,可以处理燃油中一定的蜡量。

如果燃料具有较高的 WAT/WDT,VPS 建议在进行传输操作之前加热燃料。

额外的燃料测试,例如总沉积物存在量 (TSE)、可分离性数(储备稳定性数,RSN)、蜡出现/蜡消失温度测试,以及浊点、冷滤点和化学筛选,都可以提供显着更全面、可靠的结果。 在评估燃料质量方面,这相对于单独依靠 ISO8217 更具有价值的保护信息。因此,这也是 VPS 提供附加保护服务 (APS)“捆绑包”的原因。 APS 除了包含标准 ISO8217 参数,也包含与燃料相关的附加测试,旨在支持我们的客户在资产、船员和环境保护方面达到更高水平。

多年来,VPS的不合格燃油数据都主动强调了与某些参数相关的潜在风险。通过使用附加保护服务涵盖的定期和更广泛船用燃料测试,将能够对缓解策略提供支持,以防止因燃料相关问题而导致的船舶动力供应中断。要知道,即使是很小的燃油质量问题也可能造成高昂的代价。 其中,瑞典保赔协会(Swedish Club)2018 年的一份报告强调,每一单船用燃料相关损坏事件的平均成本为 34.4 万美元。

照片来源:VPS
发布日期:2024 年 4 月 9 日

Continue Reading

Contamination

VPS就生物燃料中 FAME 对发动机油的污染影响提供建议

Stanley George 强调,发动机使用基于 FAME 的生物船用燃料会更容易受油粘度快速下降影响,因为 ,FAME 不易蒸发,并会导致产生累积效应。

Published

on

By

周一(6 月 23 日),船用燃料测试公司 VPS 的集团科学与技术经理 Stanley George 强调了发动机使用基于脂肪酸甲酯 (FAME) 的生物燃料会更容易受油品粘度快速下降影响,因为, FAME 不易蒸发,并会导致产生累积效应:

发动机若使用含有脂肪酸甲酯 (FAME) 的生物混合燃料,尤其是纯 FAME(如 100% FAME)的话,其机油粘度将会随着时间的推移而下降。

当下,发动机润滑油中存在燃油污染是一种已知的现象,其中,大多数船用级发动机油的配方都能耐受一定程度的此类污染,并保持运行性能。

同时,基于其设计和运行特点,四冲程筒状活塞发动机受 FAME 污染的影响会更为明显。因为,这些发动机使用共用的油底壳进行曲轴箱和气缸润滑,而使得它们更容易因喷油器泄漏或窜气而导致燃油漏入润滑油。相对于具有独立的润滑系统以限制燃油相互作用的二冲程十字头发动机,四冲程发动机会不断循环使用同一种油,而导致 FAME(沸点高、挥发性低)随时间的推移积聚。其中,这会导致油品粘度更显著地降低,以及润滑性能更快下降。

此外,典型的SAE(国际自动机工程师学会)30 号发动机油(一种润滑油)在 40°C 时的粘度约为 90 至 110 cSt,而 B100(100% FAME)或其化石对应物,如: DMA(馏分燃料)在 40°C 时的粘度在 4 cSt 范围内。因此,任何该类燃料(馏分油或含有 FAME 的生物馏分油混合物)混入废机油都会显著降低废机油的粘度。

在这方面,大多数原始设备制造商 (OEM) 都规定了机油的最小和最大粘度限值,若超出此限值范围发动机将不得运行,以避免发生磨损或润滑失效。例如,一个常见的报废标准,就是在40°C时机油粘度相对新油粘度值降低25%。因此,就 SAE 30号机油(在40°C时的常态新鲜粘度约为 90 cSt)而言,这将相当于所允许的最小限值约为 67 cSt。

而在比较馏分油和 B100 的粘度时,两者并没有显著差异(在40°C 时两者的粘度通常介于 3 至 5 cSt 之间)。然而,当发动机使用传统馏分油时,一般都不会观察到机油粘度明显下降。这可能是因为化石燃料中存在更高的挥发性和更轻的馏分,并往往会随着时间的推移而蒸发。此外,在发动机运行期间定期补充新鲜机油,以补偿蒸发和泄漏造成的损失,将有助于保持更稳定的整体机油粘度。因此,相对于B100, 馏分油稀释效应能被最小化,而让润滑油能够更长时间地保持性能。

脂肪酸甲酯 (FAME) 的蒸馏行为分析

ISO 3405 是一项国际标准,概述了在常压下测定石油及相关产品蒸馏特性的实验室方法。该测试可帮助我们了解燃料在储存和使用过程中的成分和行为,并包括形成蒸汽的趋势。

通常,在该方法中,样品会在受控条件下蒸馏,并在整个蒸馏过程中将记录特定体积样品的蒸发温度。而其中的关键测量指标,则包括:初沸点 (Initial Boiling Point,简称IBP) - 收集到第一滴冷凝物时的温度;终沸点 (Final Boiling Point,简称FBP) - 最后一滴液体蒸发时的温度;还有,特定回收率时的温度,即体积回收率达到 10%、50% 和 90% 时的对应温度。之后,所收集到的数据将用于绘制蒸馏曲线,以展示样品的沸腾行为。

因此,为了理解这一现象,我们使用 ISO 3405 方法比较了 100% FAME (B100)、30% FAME (B30) 和纯直馏馏分燃料的蒸馏特性。而下图,则展示了不同蒸馏特性的差异。

注:VPS 的完整文章可在此处查看。

图片来源:VPS
发布日期:2025年6月24日

Continue Reading

Bunker Fuel Quality

VPS探讨馏分油:它是“无需担忧”的船用燃料吗?

Steve Bee 探讨了在近期启动新的地中海排放控制区后,船用柴油/馏分油的更高需求究竟是否会导致燃料质量下降。

Published

on

By

船用燃料测试公司 VPS 的集团营销和战略项目总监 Steve Bee 于周四(5 月 29 日)探讨了地中海新排放控制区 (ECA) 在近期实施后,针对船用柴油/馏分油的更高需求究竟是否会导致燃料质量下降。目前,地中海地区对船用馏分油的需求已持续在增加,以满足相关的0.10% 含硫量限制规范。

此外,他也探讨了与此类船用燃料相关的燃料管理问题与挑战:

馏分油简介

随着地中海新排放控制区 (ECA) 于 2025 年 5 月 1 日启动,一个问题也随之而来:我们针对船用柴油/馏分油的需求会增加吗?如果会,需求的增加是否会导致产品质量下降?因此,本文旨在探讨当前船用馏分油的质量问题,以及可用于帮助确定燃料质量的测试参数和相关的燃料管理考量,以降低任何相关风险,具体包括:

  1. 密度
  2. 粘度
  3. 闪点
  4. 冷流性能
  5. 润滑性
  6. 脂肪酸甲酯 (FAME)
  7. 微生物活性
  8. 不相容性

几十年来,全球航运业一直将馏分油视为“无需担忧”的燃料。虽然说,高硫残渣油和极低硫油在燃料管理方面存在着一定的挑战,但其实,这并不意味着船用馏分油没有其难处,重点在于,采用它所面临的考量因素和难度有所不同。

当下,为了支持行业脱碳和合规性,ISO8217:2024 船用燃料标准已规定了四种等级的船用化石燃料馏分油,包括:DMA、DMB、DMX、DMZ,以及三种含脂肪酸甲酯 (FAME) 的馏分油,包括:DFA、DFB 和 DFZ。

目前,DMA 是最常用的船用馏分油,并适用于大多数船用发动机;相对于较重的残渣船用燃料,DMA 以更清洁的燃烧、稳定的性能和更低的排放而闻名。并且,这种燃料通常也被称为低硫船用轻柴油 (LSMGO)。

  • DMA:这是以上所述的 LSMGO。根据分类,它属于一种适用于各种船用发动机的标准船用馏分油。
  • DMB:馏分油中最重的燃料,通常用于中速船用发动机。
  • DMX:通常被称为特殊轻质馏分油,主要用于应急发动机和设备,以及一些需要低粘度和低密度燃料的高速发动机。
  • DMZ:这是一种清洁馏分油,适用于更敏感的发动机。

与此同时,超低硫燃料油 (ULSFO) 也是另一种类似的燃料类型。而当下,像DMA这样的船用燃料通常会添加特定的添加剂混合物,以应对和化解海洋环境中的典型挑战,例如:储罐中微生物的生长。此外,DMA 的十六烷值(燃料的发火性能)通常超过 45,而 ULSFO 的十六烷值则介于40 到 45 之间。在市面上,有些高级柴油的十六烷值会更高,但,采用ULSFO 的主要目标仍在于降低硫排放。

在成本方面,DMA 成本较高,而成了其又一个差异化因素,并且,其价格可能受到特定海运规则、港口需求以及全球船燃市场整体动态所影响。而对于超低硫燃油 (ULSFO),则其定价主要取决于原油价格、炼油厂产能、运输成本,以及公路运输行业的需求等因素。

在送交 VPS进行测试的所有燃油样品中,船用馏分油 (MGO) 和超低硫燃油 (ULSFO) 分别占了 14.2% 和 1.2%:

在2025年第一季度,馏分油交付量保持稳定,约为80万吨,而超低硫燃油的交付量则环比增长了15%。

注:上述源自VPS的完整版本文章可在此处阅读。

图片来源:VPS
发布日期:2025年5月30日

Continue Reading

Bunker Fuel Quality

Gard:腰果壳油混合物是问题燃料的标志吗?

在Gard 处理过的一些索赔案件中,曾涉及因传统燃料中含有源自腰果壳油的酚类化合物,而出现船舶运营问题或机械损坏。

Published

on

By

嘉德保赔协会(Gard)最近发表的一篇文章探讨了关于腰果壳油 (CNSL) 的深入分析,以及该协会所处理的几起涉及传统燃料中检测出源自 CNSL 的酚类化合物的案件,其中,这些化合物也是船舶出现运营问题或机械损坏的原因。

此外,本文章也由VPS 的 Captain Rahul Choudhuri 协助撰写,内容如下:

为了满足环境法规,运输行业对低碳至零碳燃料的需求正不断增长,并因此促进了人们对替代燃料的兴趣。其中,脂肪酸甲酯 (FAME) 是生物燃料的热门选项,但,由于各运输行业的需求量很大,其需求已超过了供应量。与此同时,源自腰果产业的副产品——腰果壳油 (CNSL),目前已被视为一种生物燃料的替代原料。

什么是 CNSL?

与 FAME 生物燃料不同 ,腰果壳油是一种经济高效的可再生燃料。不过,作为一种取代苯酚物质,其高反应性和较低的稳定性也归因于其较高的碘值。而除了燃料潜力之外,腰果壳油 (CNSL)目前已用于生产塑料、树脂、粘合剂、层压板和表面涂层。此外,其高酸值 (> 3mgKOH/g) 也使其具有显著的腐蚀性。与此同时,腰果壳油中易聚合形成胶状物和燃料沉积物的主要酚类化合物包括:

  • 腰果酸,为腰果壳油高酸性特性的主要原因。其中,热脱羧可将其转化为腰果酚,以从而降低酸性和增强稳定性。
  • 腰果酚,也称为银杏酚,是一种稳定的酚类化合物,源自腰果酸,并具有改善的燃烧性和润滑性。
  • 腰果酚,也称为橄榄酚,是一种具有类似表面活性剂作用的二羟基苯衍生物。

腰果壳油造成操作问题的案例

尽管腰果壳油具有增加润滑性和能量含量的优势,但其高酸性、燃烧性差和腐蚀性,也带来了相应的挑战。 2022年,在ARA地区报告了常规燃料普遍受腰果壳油(CNSL)污染的报道,并导致了燃油淤积、燃油喷射器故障、发动机部件腐蚀、滤清器堵塞、燃油系统出现沉积物、涡轮增压器喷嘴环腐蚀、燃油泵柱塞和泵筒磨损以及选择性催化反应器(SCR)装置损坏等运行问题。自这些事件发生以来,Gard已处理了多起涉及从燃料中检测到不同浓度腰果壳油(CNSL)酚类化合物的案件。

案例研究1

一艘船舶在东南亚加注了高硫燃油(HSFO),尽管,其已通过ISO 8217表2的初步测试和初步的气相色谱-质谱联用仪(GCMS)筛查,但,该燃油很快即引发了主机排气温度警报,并随后引发喷射器泄漏和致使燃油阀卡住。事后,该船需要被拖曳800海里才能安全抵达目的地。而后续的气相色谱-质谱联用仪(GCMS)检测,也显示了燃料的腰果壳油(Cardonol)含量超过10,000 ppm。并且,由此造成的损失超过了80万美元。

案例研究 2

在使用最初已通过 ISO 8217 表 2 测试的超低硫燃油 (ULSFO) 后不久,一艘船舶出现了严重的运营问题。其中,相关燃油是在北欧某港口被加注;而所引发的问题,包括主发动机排气温度过高、辅机发生故障和燃油泄漏,以及喷嘴结垢和高压燃油管损坏,最终,这些问题导致了所有燃油泵和阀门不得不被更换。同时,气相色谱-质谱联用 (GCMS) 分析显示,燃油中的腰果酚 (> 30,000 ppm)、腰果酚 (> 5,000 ppm) 和腰果酸 (> 1,000 ppm) 含量高,并总计占燃油成分质量的 1.24%。在经历这一事件后,船舶所需的维修费用超过了 40 万美元。

此外,我们也了解到,还有另几艘船舶也受同一批燃油影响。

值得注意的是,曾有案例表明,CNSL 混合传统燃料在储存和燃烧过程中并未出现任何运行问题。

以CNSL 作为生物燃料的测试(VPS 的经验)

VPS 在其近期发表的文章《腰果壳油——生物燃料的救星还是令人担忧的污染物?》(Cashew Nut Shell Liquid – Biofuel Saviour or Concerning Contaminant?)中分享了其对 CNSL 产品进行测试的结果,其中,这些产品与船用轻柴油 (MGO)、极低硫燃料油 (VLSFO) 和高硫燃料油 (HSFO) 进行了混合。经测试后,燃料燃烧分析 (FCA) 揭示了估算十六烷值、点火延迟和放热速率 (ROHR) 的一系列结果,其中, CNSL 混合物也呈现出性能影响梯度:HSFO混合物表现尤其不佳,VLSFO 混合物相对有所改善,而 MGO 混合物的效果则最为理想。

无论化石燃料/腰果壳油 (CNSL) 的混合比例是 80/20、70/30 ,还是 50/50,使用HSFO 的混合燃料的 FCA 结果始终最差。其中,这可能是由于HSFO 的沥青质含量与腰果壳油 (CNSL) 的酸性之间存在负相互作用。与 100% 的化石燃料、HSFO、VLSFO、MGO 和 100% 脂肪酸甲酯 (FAME) 相比,每种腰果壳油 (CNSL) 混合燃料的 FCA 结果均较差。

此外,他们也分享了一个 B100 案例研究,其中,该燃料被认定为 100% 脂肪酸甲酯 (FAME),但相关分析却显示了其成分为 40% 脂肪酸甲酯 (FAME)、10% 脂肪酸甲酯残渣和 50% 腰果壳油 (CNSL)。从技术上而言,该燃料仍属于 B100,但却含有不同的生物质成分。因此,这也强调了租船人和船东在燃料采购方面进行尽职调查的重要性。

CNSL 与 ISO 8217

Gard寻求咨询的一位专家报告称:“CNSL 并非船用燃料中的允许成分,因为,它并非石油精炼衍生的碳氢化合物,也不是来自其他被允许使用的碳氢化合物来源,而违反了 ISO 8217 第 5 条的规定。”在VPS 警报中, VPS也表达了类似的观点:“以 ISO 8217:2024 及所有先前版本为依据,CNSL不被视为标准燃料成分。因此,根据 ISO 8217 标准进行评估时,船用燃料中的 CNSL 可能被视为污染物,并可能被归类为不合格品。”

值得注意的是,ISO 8217:2024 的附件 B 指出,各种化学物质或物质(尽管并未详尽列出)都可能导致操作问题。因此,燃料油购买者可能需要进行高级测试,以识别燃料中可能导致不适用于发动机的物质。此外,尽管 ISO 8217:2024 涵盖生物燃料,其范围却未涵盖所有形式的生物质。

注:Gard 的完整文章(包括主要建议)可在此处找到。

相关文章: VPS 探讨腰果壳油(CNSL):生物燃料的救星还是令人担忧的污染物?
 
图片来源:Unsplash 和 Gard 的 Shaah Shahidh
发布日期:2025 年 5 月 29 日

Continue Reading
Advertisement

我们的合作伙伴



趋势分析