Connect with us

Ammonia

瓦锡兰:以氨作为船用燃料? 如果能更精明处理将更容易实现

瓦锡兰技术集团探讨了使用氨作为船用燃料的多个方面,包括氨加注作业、其主要挑战以及其优点和缺点。

Published

on

科技集团瓦锡兰(Wärtsilä)公司周四(8 月 24 日)发表了一篇见解文章,解释了氨作为船用燃料和其操作等相关注意事项。

以下为文章摘录:

随着航运业正寻求更可持续的燃料选项,氨已成为一种具前景的替代品。因此,本文探讨了使用氨作为船用燃料的各个方面,并提供了如何更明智地使用氨的洞见。

为了实现 IMO 到 2050 年实现温室气体净零排放的目标,航运业需要转向更清洁的燃料。在几种潜在的选择中目前没有明显的领先者,不过,作为其中选项的氨提供了一些独特的优势,使其有机会成为领先的竞争者。这包括:

 • 氨燃烧时不会产生二氧化碳、硫磺或颗粒物排放。
 • 适合其他应用但也适用于氨的供应链和基础设施已存在。
 • 它可以使用可再生能源生产。
 • 其船上储存和处理相对容易。

不过,这是适合您船舶的解决方案吗? 请仔细阅读以找出答案。

氨作为船用燃料

氨是一种可行的燃料吗? 氨可以用作燃料吗?

对于航运业来说,氨是一种有吸引力的化石燃料替代品。它具备潜力显着减少温室气体排放,不过,却仍存在需要被克服的挑战。其中,这包括开发可靠的氨燃料加注网络,以及,因其用作燃料的腐蚀特性而造成氨发动机需被额外维护。

氨可作为气体或液体燃料被使用。同时,发动机只需稍加改动就可以很好地燃烧这种燃料。

氨燃料的效率如何?

当谈到氨燃料效率时,最重要的,就是它的体积效率和能量密度比柴油低。同时,氨发动机的效率也低于传统化石燃料发动机。简而言之,使用氨的船舶需要更大的燃料存储容量。并且,所需的存储基础设施体积和重量也可能对船舶的运营范围产生重大影响。

使用氨为船舶燃料时的主要挑战有哪些?

使用氨作为船舶燃料时会面临三个主要挑战:

 • 氨有毒,因此必须考量其对整个船舶带来的安全风险,以及其相应的通风系统。
 • 当使用氨时,与柴油或LNG(液化天然气)相比,船舶将需要更大的燃料存储容量,因为氨的体积能量密度比这两种燃料都要低。
 • 由于氨是一种新燃料,因此,其相应监管政策仍在制定中。

氨作为船用燃料有哪些优点?

氨的最大优点之一在于它不含任何碳分子,当它在发动机中燃烧时不会产生二氧化碳排放。因此,采用绿色氨作为海运燃料是航运业脱碳的其中好方法,将有助于减少对化石燃料的依赖,并迈向更可持续的未来。

氨来源丰富,可以利用风能和太阳能等可再生能源生产。同时,它已被广泛制造和交易,并主要用于生产化肥,且具有成为可行船用燃料的能源潜力。

当氨以液态使用时,其燃料储存和输送系统无需过于复杂,并因此降低了运营成本。

同时,氨已被用作生产电力的燃料。

氨作为船用燃料有哪些缺点?

氨因具有剧毒和腐蚀性而需要被小心处理和储存。 然而,通过适当的船员培训和设置防护装备、通风系统等设备将可以减轻其风险。

氨作为燃料燃烧时不会产生二氧化碳。同时,它所产生的氮氧化物排放可以通过减排解决方案进行处理,并可能需要湿式脱硫塔系统来管理潜在的氨气释放。不过,在这方面仍需通过与船级社合作对相关解决方案予以更多研究。

氨的最大未知数之一在于如何处理潜在的 N2O 排放。目前正被开发的 N2O(一种强效温室气体)催化剂,旨在最大限度地减少 N2O 排放以使氨成为可持续的解决方案。例如,瓦锡兰 25 氨解决方案(Wärtsilä 25 ammonia solution)具有优化的燃烧和集成后处理能力,旨在最大限度地减少所有温室气体排放。

欲快速了解氨作为船用燃料的优缺点概述,您可以下载一份方便的单页备忘单:《未来燃料 101 – 氨》(Future fuel 101 – Ammonia)

船用氨燃料的安全性

如何安全地使用作为船用燃料的氨?

氨存在一些与毒性、爆炸风险和气味相关的安全问题。因此,目前业界正在制定法规,以确保氨可以安全地被用作海上燃料。

在氨燃料安全性方面,需记住三个重要的考虑因素:

 • 氨具有剧毒,如果处理不当可能会带来危险。
 • 氨需要专门的储存和处理设备。
 • 氨燃料系统的设计必须考量安全性。

对此,瓦锡兰正在针对相应协议和技术与船级社密切合作,以确保氨可以安全地用作海上燃料。

将氨用作船用燃料时需要考虑什么?

随着航运业正走向脱碳,氨正在成为一种具前景的替代燃料。为了实现转型,您的发动机将需被设计成能够使用氨,并且,也需让暴露于燃料的部件采用特定材料。此外,使用氨作为船用燃料,也需对机舱和燃料处理系统进行重大改变。

建造新船时,在设计阶段考虑使用氨作为燃料所需的条件至关重要。从改造工程的角度来看,为了在船上安全地加注、处理和燃烧氨,船舶的现有结构必须作出一些改变。这将需要通过设计、组装和建造新的结构,以创造必要的空间来储存船上的氨并将其转移到改装后的发动机上。 同时,也需要布置辅助系统以保证达到适用规则和法规要求的安全水平。此外,可能也需要设置新的辅助系统,例如排水系统、舱底系统、氮气系统和通风系统。

氨燃料加注网络会是什么样子?

氨作为船用燃料的可用性,特别是绿色氨,对于实现海事行业的脱碳目标至关重要。目前,我们已开始看到更多关于氨燃料加注网络的讨论和可能投资决策。因此,随着市场开始采用氨,这一规模将会扩大。

如今,氨的需求主要由化肥消耗驱动,但随着越来越多的船舶使用氨,海事工业的需求将相应地开始增加。DNV 预测,到 2030 年,航运业的氨用量将达到 170 PJ(占航运燃料组合的 1%),并到 2040 年将达到 1,900 PJ(占燃料组合的 13%),以及到 2050 年将达到 5,000 PJ(占燃料组合的 36%)。

同时,氨加注系统可以为固定式,也可以是移动式。其中,固定式加注涉及港口或加注站的固定基础设施,而移动式则需通过使用可移动的储罐。 根据温度或压力,氨可以以液体或气体形态被储存。

安全措施和环境考虑在氨加注系统的部署中将发挥至关重要的作用。

注意:瓦锡兰对于氨作为船用燃料的完整见解可在此处阅读

照片来源:瓦锡兰
发布日期:2023 年 11 月 20 日

Continue Reading

Ammonia

新加坡国立大学启动近零排放氨船用发动机研发项目

该项目专注于一种新型缸内重整气体再循环发动机概念,旨在解决迄今为止制约氨作为船用燃料被更广泛应用的关键限制因素。

Published

on

By

新加坡国立大学(National University of Singapore,简称NUS)于周五(2月6日)宣布启动一项重大研究项目,并将设于其设计与工程学院(College of Design and Engineering,简称CDE)校区,旨在通过开发高效、近零排放的新一代氨燃料船用发动机,加速全球航运业脱碳进程。

该项目由新加坡国立大学氢能创新研究中心(Centre for Hydrogen Innovations,简称CHI)牵头,并获得新加坡海事学院(Singapore Maritime Institute,简称SMI)的资助,以及同时与新加坡及海外领先的学术界和产业界合作伙伴开展合作。

其中,该项目专注于一种新型缸内重整气体再循环(in-cylinder reforming gas recirculation,简称IRGR)发动机概念,旨在解决迄今为止制约氨作为船用燃料被广泛应用的关键限制因素。

该项目的首席研究员、新加坡国立大学机械工程系副教授Yang Wenming表示:“氨已被公认为最有希望在船舶运输领域实现近零温室气体排放的燃料之一,但目前的氨发动机在效率和排放方面仍面临诸多挑战。”

“因此,IRGR概念旨在通过提高燃烧效率并大幅减少未燃烧的氨和其他污染物来克服这些局限性。”

机械工程系高级研究员Zhou Xinyi博士表示:“该项目包括在CDE园区内设立一个专用实验室,并备有发动机测试室、控制室以及用于基础燃烧和系统研究的设施。”

除了技术开发之外,该计划也旨在通过将先进的发动机研究融入更广泛的产业合作和人才培养生态系统,以巩固新加坡作为海事创新和可持续航运技术中心的地位。

同时,CDE副院长(研究与技术)Silvija Gradecak 教授将IRGR氨发动机项目描述为海运业脱碳进程中的一个重要里程碑。

“海上运输是全球贸易的核心,但,它仍是脱碳难度最大的行业之一。”她说道。

“通过这个项目,项目团队旨在开发并演示世界上首个基于IRGR概念的原型发动机,以从而为氨作为船用燃料的实际应用铺平道路。”

目前,全球航运约占全球碳排放量的3%,同时,该行业正面临越来越大的压力,需要根据国际净零排放目标减少其对环境的影响。虽然,氨在燃烧时不会产生二氧化碳,而且比氢更容易储存和运输,但是,与热效率、燃烧稳定性和污染物排放相关的挑战,仍然是其商业化应用的关键障碍。

该项目的重要学术合作伙伴、上海交通大学李铁(Li Tie)教授表示:“国际海事组织(IMO)的净零排放目标必须在2050年之前实现,因此,时间非常紧迫。”

“任何单一机构或国家都无法实现这一目标。因为,这需要颠覆性技术和强有力的国际合作,而IRGR项目,正是这种合作的体现。”

该联盟的合作伙伴包括上海交通大学、南洋理工大学、新加坡科技研究局(A*STAR)国家计量中心和Keppel Energy Nexus,以及行业合作伙伴Daihatsu(全球领先的船舶发动机制造商)和美国船级社(ABS)。其中,他们的参与旨在确保研究始终立足于实际工程需求、安全考量、认证途径和商业相关性。

此外,新加坡国立大学 (NUS) 的项目启动仪式也吸引了来自政府、产业界和学术界的众多高级专业代表,其中包括新加坡海事及港务管理局 (MPA) 和SMI的领导,以及Daihatsu Infinearth 总裁Yoshinobu Hotta和美国船级社 (ABS) 技术副总裁(太平洋地区)顾海博士 (Dr. Gu Hai)。在仪式上,新加坡国立大学分别与Daihatsu公司以及与美国船级社正式签署了研究合作协议。

该项目预计将持续三年,期间,研究团队将致力于开发可扩展的发动机概念,以支持未来在全球范围内部署低排放和零排放船舶。

图片来源:新加坡国立大学
发布日期:2026年2月10日

Continue Reading

Ammonia

DNV:氨技术距离远洋航运又近了一步

DNV探讨了Everllence公司ME-LGIA氨双燃料发动机的研发进展,并详细介绍了其采取的安全措施、减排潜力以及早期候选船舶领域。

Published

on

By

船级社DNV于周四(2月5日)讨论了Everllence公司ME-LGIA氨双燃料发动机的研发进展,并详细介绍了其安全措施、减排潜力以及早期候选船舶类型:

随着海运业加速脱碳,向低温室气体燃料转型已非常重要。其中,LNG(液化天然气)和甲醇已引领潮流,而氨也正在取得进展。目前,已有三艘可使用氨燃料的船舶投入运营,并另有45艘已被订购,因此,这都意味着强劲的发展势头。

以氨推动脱碳

氨具有诸多显著优势。其中,它在燃烧过程中不产生碳排放,并且,如果使用可再生能源生产,也可以显著降低总体排放。同时,其体积能量密度也使其适用于需要可靠燃料解决方案的远洋航行。

然而,氨的推广应用并非一帆风顺。因为,氨的高毒性和腐蚀性,导致其需要采取比传统燃料更为严格的安全措施和专门的操作规程。与此同时,加注基础设施、船员培训和全生命周期排放等问题仍非常重要。然而,如果这些挑战能够得到解决,氨将成为未来航运业的一个可行选择。

发动机开发商致力于推动氨推进技术

在强劲发展势头下,发动机制造商正加紧研发适用于氨推进系统的方案。

其中,WinGD 和 J-ENG 在2025 年底,以及Everllence 在 2026 年初交付了首批双燃料二冲程发动机。与此同时,现代(Hyundai)的 HiMSEN H22CDF-LA 四冲程发动机已获得多船级认证。

在已订购的船舶中,包括 HöeghAutoliners 和 Eastern Pacific Shipping 等船东的船舶在内,有七艘将配备 Everllence 新推出的 10-15 兆瓦二冲程氨气发动机。

ME-LGIA 氨双燃料发动机问世

Everllence ME-LGIA(液态氨燃料喷射)双燃料发动机问世,标志着零碳推进领域的一个重要里程碑。基于柴油机原理,该发动机采用液化气喷射技术,可同时使用氨气和传统燃料。其中,这种灵活性在过渡阶段将为船东提供支持,使船舶能够在基础设施和供应链成熟后切换燃料类型。

Everllence 新造船高级推广经理 Hrishikesh Chatterjee 解释:“我们的 ME-LGIA 发动机旨在提供与我们传统二冲程发动机相同的可靠性和效率,并同时帮助船东向零碳运营踏出关键一步。因此,安全性和数字化都是这项研发的核心。”

集成安全屏障和数字连接,确保氨作业安全

为了应对氨独特的安全挑战,Everllence 集成了双层壁管道,并配备连续通风系统和受监控的气流,以将气流输送至处理系统。

同时,其氨释放缓解系统和氨捕集系统等功能,包括分离罐和水柱洗涤装置,都有助于确保任何泄漏在到达人员活动区域之前得到控制和中和。其中,燃料阀组采用双重阻断和泄放隔离,并辅以氮气吹扫程序,将为船员和船舶增加一层额外的故障安全保护。此外,该发动机采用数字化连接,可实现船舶与Everllence岸基监控系统之间安全的实时数据流。此外,这种连接支持远程协助和运行优化,以减少停机时间并提高可靠性。

工程投入和广泛测试

ME-LGIA发动机的研发体现了Everllence在工程方面的重大投入。自2023年7月以来,Everllence已投入超过15万小时于设计和验证,并进行了800多项测试,以确保发动机性能和安全性。其中,这些测试涵盖不同运行条件下的燃烧特性、排放特性、材料兼容性和故障模式分析。

并且,这项历时多年的研发计划包括可燃性研究、正式的危险源辨识(HAZID)和危害与可操作性分析(HAZOP)研究,以及全尺寸加注和发动机试验。

“在发动机型号的演进过程中,我们学到的最重要经验之一,就是一个稳健的模块化平台对于创新至关重要。”Chatterjee强调。

“我们的ME-C平台已被证明是开发先进双燃料技术的可靠且适应性强的基础,能支持可扩展的升级和系统化的双燃料改装,以确保可在未来进行升级或改造。”

注:DNV题为《氨技术距离远洋航运动力更近一步》的完整文章可在此处阅读。

图片来源:Everllence
发布日期:2026年2月10日

Continue Reading

Ammonia

GCMD发布新加坡船对船氨转运作业的风险评估报告

该报告代表了GCMD在新加坡所开展氨加注相关工作的第二阶段成果,并主要聚焦于专用的氨加注船还未投入使用前先利用现有氨运输船进行STS转运。

Published

on

By

全球海事脱碳中心(Global Centre for Maritime Decarbonisation,简称GCMD)于周一(1月19日)发布的最新报告详细评估了新加坡港口水域船对船(STS)氨转运的作业风险。

该研究建立于其早期基础工作,并进一步加深了高流量港口环境下安全氨加注条件的理解。

同时,这份报告是GCMD在新加坡所开展氨加注相关工作的第二阶段成果,主要聚焦于专用的氨加注船还未投入使用前先利用现有氨运输船进行STS转运。

与之前的研究结果一致,第二阶段的研究表明,只要制定完善的安全保障措施、风险评估和强有力的跨行业协调,在新加坡港口水域进行氨转运作业在技术和操作上都是可行的。

安全评估的主要结论如下:

  • 在当地天气和海况限制下,通过保守的操作标准和持续的引航服务,可以安全地管理两艘氨运输船过境和并排靠泊。
  • 已通过HAZID(危险源辨识)和 HAZOP(危害与可操作性分析)研究识别中等风险,并主要涉及船舶接口、系泊、设备和操作规程;其中,所有这些风险在采取适当的安全措施、检查清单和应急计划后均被认为在容差范围内。
  • 定量风险评估表明可以建立安全区,其中,确定性模型建议,对于每年一次的转运作业,保守的安全区半径应为 547 米。
  • 针对最坏泄漏场景的 CFD(计算流体力学)建模显示了有毒气体云的形成,其中,这些气体云可能会危及逃生通道和居住区进风口,而凸显了健全检测系统、快速隔离措施和有效船员保护的重要性。

GCMD 补充道,这些发现已为新兴的行业指南(涵盖 SGMF 的氨加注指南)带来了贡献,并正在帮助整个行业做好准备采用氨作为船用燃料。

注:报告可在此处获取。

图片来源:Global Centre for Maritime Decarbonisation
发布日期:2026 年 1 月 20 日

Continue Reading
Advertisement

我们的合作伙伴



趋势分析